Meson-Nucleon Physics and the Structure of the Nucleon

Precision spectroscopy of Kaonic Helium-3 X rays at J-PARC

Masaharu Sato

University of Tokyo

on behalf of J-PARC E17 collaboration

May 31-June4. 2010

J-PARC E17 collaboration

H. Bhang¹, M. Cargnelli², S. Choi¹, C. Curceanu³, O. V. Doce³, S. Enomoto⁴, H. Fujioka⁵, Y. Fujiwara⁶, C. Guaraldo³,
T. Hashimoto⁶, R. S. Hayano⁶, T. Hiraiwa⁵, M. Iio⁷, S. Ishimoto⁸, T. Ishiwatari², K. Itahashi⁷, M. Iwasaki^{7,9}, H.Kou⁹, P. Kienle^{2,10}, J. Marton², Y. Matsuda⁶, H. Noumi⁴, H. Ohnishi⁷, S. Okada³,
H. Outa⁷, F. Sakuma⁷, M. Sato⁶, M. Sekimoto⁸, H. Shi⁶, D. Sirghi³, F. Sirghi³, T. Suzuki⁶, K. Tanida¹, H. Tatsuno⁶, M. Tokuda⁹,
D. Tomono⁷, A. Toyoda⁸, K. Tsukada⁷, A. R. Vidal³, E. Widmann², B. Wunschek², T. Yamazaki^{6, 7}, J. Zmeskal²

SNU¹, SMI², LNF³, RCNP⁴, Kyoto Univ.⁵, Univ. of Tokyo⁶, RIKEN⁷, KEK/J-PARC⁸, Tokyo Tech⁹, Tech. Munich Univ.¹⁰

Contents

D Introduction

□ J-PARC E17 experiment

D Preparation status

D Summary and Outlook

Kaonic Helium atoms

Formation of Kaonic He atoms

Latest experiment on Kaonic Helium-4

precision measurement of Kaonic 4He 3d \rightarrow 2p X ray

Recent relevant work

Coupling

■ Theoretical study by Akaishi, EXA05 proceedings Possible large shift (|△E2p| > 5 eV)

Coupled-channel w/ deep potential

$$U_{\rm D}(r) = -U_0 F(r), \quad U_{\rm C}(r) = U_{\rm coupl} F(r)$$

F(r): helium density dist.

Unique theoretical result for large shift ($|\Delta E2p| > 5 \text{ eV}$)

Diagonal

c.f. Optical model w/ deep potential \rightarrow small shift

If deep potential, large shift can be possible

E570 result

Definitive answer for kaonic helium puzzle

Motivation of J-PARC E17

Akaishi-Yamazaki framework (Coupled-channel + deep pot.) eV from E570 ΔE_{2p} **Possible large shift** repulsive 15 ⁴He-K[−] for 3He Upward 10 $-\Delta \mathbf{E}_{2p}$ 5 Goal of J-PARC E17 200 100 Measurement of Kaonic 3He X-0 300 attractive U_o MeV rays with "high precision" -5 -10 ³He-K⁻ constraint to the potential depth Downward of AY framework 40 If non-zero ($|\Delta E_{2p}| > 5 \text{ ev}$) shift, No large width deep potential Γ_{2p} from E570 Γ_{2p} 20 need additional framework for theory 0 100 200 300 repulsive (upward) shift : \checkmark potential depth U_0 existence of p-wave nuclear state

E17 Experimental strategy

- Following successful E570 techniques
 - Silicon Drift Detector
 - In-beam energy calibration
 - fiducial volume cut

Silicon Drift Detector

Absolute energy calibration

fiducial volume cut

- Event selection by secondary charged particle
 - Liquid helium-3 target (density = 0.08 g/cm3(1 g/cm2), D=6.8 cm)

Reaction vertex determination by secondary charged particle

Setup and Preparation status

- **D** Beamline spectrometer
- Cylindrical detector system
- Liquid 3He target
- Silicon drift detector

J-PARC E17 experimental setup

Beamline spectrometer

Cylindrical Detector System (CDS)

■ Track secondary charged particles → apply target volume cut

Liquid Helium-3 target

- Condense gaseous 3He by liquid 4He (He-II): heat contact @ heat exchanger
- **3He** convection flow

Silicon Drift Detector

Summary & Outlook

Precision spectroscopy of Kaonic ³He at J-PARC with precision below 2 eV.

 All detectors show good performances and constructions are almost finalized.

E17 experiment will be performed in Day-1 at J-PARC hadron facility

Backup slides

Timing resolution of SDD

Sr90 source with thin semiconductor detector (PIPS)

Preamp operation in vacuum

succeed in preamp operation in vacuum

Comparison with past experiments

	E570 (present)	Past exp.
Resolution (FHWM)	~185eV @6.5keV	~300eV @6.5keV
Effective area	100mm ² * 8 SDDs	300 mm ²
Detector thickness	0.26 mm \rightarrow Good S/N	~4 mm
Energy calibration	In-beam calib. (Ti,Ni)	Not in-beam calib.
Fiducial volume cut	Yes	No

J-PARC

J-PARC = (Japan Proton Accelerator Research Complex)

J-PARC hadron facility

Target : design

K1.8BR experimental area

K1.8 & K1.8BR(branch)

• E15 and E17 exp.@K1.8BR

Target : Be transmittance : result

Be 250、375、500µm)
 small contribution from impurity

~90 % @ 6.2 keV

MICTRON dow transmittance
 λ : 110 μm
 T = 250 mm →~20%@6.2 keV
 (T = 100 mm →~50%@6.2 keV)

Unfavorable for X ray measurement

Conclusion :

Be cell is the best choice

E17 setup

Reaction	:	stopped $K^- + {}^{3}\text{He} \rightarrow h\nu (\sim 6.4 \text{keV}) + X$
Primary beam	:	$30 \text{ GeV}, 9 \ \mu\text{A} \text{ proton}$
Secondary beam	:	$0.75 { m ~GeV/c} { m ~K^-}$
Beamline	:	K1.8BR or K1.1
Target	:	Liquid ³ He, diameter 6.4 cm, length 15 cm (482.5 cm^3)
Detectors	:	$8 \times 100 \text{ mm}^2$ silicon drift detectors (SDD),
		beamline counters and chambers,
		vertex trigger counters and tracking chambers.
Beam time	:	10 days for commissioning
		+3.5 days at K1.8BR (assuming full PS intensity)
		+35 days at K1.8BR (with 10% of the design intensity) ⁴

Pre-amp (150~200 K)

Application to X-ray detection system

Install X ray detectors (SDDs) very close to the 3He target

Target temperature map

